
 1 

Final	Project:	Implementing	a	Channel	Vocoder	
Xiao	Lu	

2618	C	Programming	
May	5,	2016	

	
Description	
	
The	project	is	an	implementation	of	a	classic	channel	vocoder	instrument.	A	vocoder	
is	 a	 tool	 to,	 in	 some	 way,	 combine	 two	 kinds	 of	 sounds	 together	 by	 using	 signal	
processing	techniques.	The	most	common	way	of	processing	vocals	with	a	vocoder	is	
to	use	a	synthesizer	part	as	the	carrier	signal	and	the	voice	as	a	modulator;	this	creates	
the	sort	of	filtered	sound	you	hear	in	the	vocals	of	Herbie	Hancock’s	‘I	Thought	It	Was	
You’	and	more	recently,	the	bridge	of	Daft	Punk’s	‘Get	Lucky’.	 	
	
Specifically,	the	program	reads	in	two	WAV	files,	a	carrier	and	a	modulator,	and	then	
writes	the	resulting	signal	into	a	new	WAV	file	as	the	output.	Although	the	program	is	
used	 in	a	non-realtime	way,	 it	 aims	 to	 simulate	a	 real-time	process.	Therefore,	 the	
overall	framework	is	generally	designed	as	a	real-time	program	in	which	I	employed	
an	input	buffer	and	an	output	buffer	with	a	size	of	N	(e.g.	512	or	1024)	frames.	Also	
there	are	parameters	defined	 in	 the	 code	 that	 can	 significantly	 improve	 the	effect,	
such	as	number	of	bands	and	hop	size	(related	to	overlapping).	 	
	
	 	



 2 

	
Program	Flow	

	
 
	
I	wrote	all	of	the	code	in	files	test.c	and	vocode.c,	with	corresponded	header	files.	The	
code	 of	 fft.c	 was	mainly	 borrowed	 from	 convolve.c	 that	was	 used	 in	 the	 previous	
assignment;	what	I	did	was	re-organizing	the	code	and	writing	a	.h	file	for	it.	
	
In	file	main.c:	

• The	main()	 function	 parses	 the	 command	 line;	 sets	 up	 and	 open	 the	 audio	
object	WAV	file;	opens	the	modulator	and	carrier	WAV	files,	reads	them	into	
buffers	 in	 memory	 and	 does	 necessary	 error	 checking;	 calls	 the	 vocoder	
function	where	the	core	algorithm	is	performed;	after	that,	it	writes	the	output	
buffer	into	a	new	WAV	file;	and	free	used	buffers.	

• A	number	of	 important	parameters	are	defined	 in	 the	header	 file	 including	
NUM_BAND	which	is	the	number	of	bands	to	use,	BUFFER_SIZE	that	is	the	size	
of	a	buffer	and	a	window,	and	HOP_SIZE	which	means	how	many	frames	the	
buffer	will	hop.	
	
	



 3 

In	file	fft.c:	
• Two	 datatypes	 are	 defined	 in	 fft.c,	 real	 and	 complex,	which	 are	 in	 essence	

floating	points	data.	 	
• The	 fft	 and	 ifft	 function	was	 originally	written	 by	 the	 author	 of	 convolve.c,	

which	 require	 the	 input	buffer,	 the	 length,	 and	 a	 scratch	buffer	 in	 order	 to	
complete	a	recursive	process.	

	
In	file	vocode.c:	

• In	 this	 file,	a	set	of	buffers	 for	window,	modulator,	carrier	and	output	are	
initialized	and	allocated	with	memory;	windowing	and	FFTs	are	performed	
on	 both	 the	 modulator	 and	 carrier;	 the	 magnitudes	 of	 the	 two	 resulting	
arrays	from	FFTs	are	calculated	by	the	magnitude	function	I	wrote;	then,	for	
each	filterbank,	a	ratio	of	x_mod_mag	to	x_car_mag	is	obtained	as	a	gain	value	
that	 is	 then	 used	 to	 calculate	 the	 output	 values;	 after	 getting	 the	 whole	
spectrum	 of	 the	 output,	 an	 IFFT	 is	 performed	 to	 re-construct	 the	 time-
domain	signal;	finally	a	normalization	process	is	applied	by	calculating	RMS	
values	of	input	and	output	and	then	scaling	the	output.	 	

• In	addition,	in	the	outer	loop,	the	increment	of	each	count	is	set	to	the	hop	
size;	the	filterbanks	are	linearly	arranged	across	half	of	the	spectrum	(only	
the	 content	 below	 the	 Nyquist	 frequency	 is	 useful);	 the	 window	 type	 is	
flexible	but	usually	a	Hanning	or	Hamming	window	is	a	good	choice.	

	
I	 developed	 and	 ran	my	project	 on	Mac	OS	X,	 but	 it	will	 also	 compile	 and	 run	 on	
Windows/Cygwin.	
	
My	Code	and	Libraries	
I	wrote	the	code	described	above,	and	used	the	following	libraries:	

Sndfile	
	

I	obtained	the	libraries	by	using	“brew”	
	 brew	install	sndfile	
	
Computational	Complexity	
The	 critical	 part	 contributing	 to	 the	 complexity	 of	 the	 program	 is	 in	 the	 vocode	
function,	 where	 a	 number	 of	 buffers	 are	 accessed,	 a	 series	 of	 mathematics	 are	
involved,	and	there	are	also	FFTs	being	called.	 	
	
For	 FFTs,	 the	 Big-O	 complexity	 is	 Log-Linear	 Time	 (N*log2(N)).	 For	 most	 of	 the	
computations	in	the	code,	the	Big-O	complexity	is	Linear	Time.	 	
	
The	non-realtime	program	works	fairly	fast	and	stable,	so	it	is	highly	possible	to	work	
in	real-time	(which	is	also	my	future	work)	as	well.	
	
Comilation	and	Linking	
	 The	makefile	shows	how	to	compile	and	link	my	program	for	the	OS	X	platform.	



 4 

	
Command	Line	
The	generic	command	line	to	run	the	program	is:	

./vocoder modulator.wav carrier.wav [output.wav] 
A	specific	command	line	is	
 ./vocoder mod_testing.wav car_synth.wav output.wav 
 


